

Measurements Of Humidity in the Atmosphere: Validation Experiments (MOHAVE, MOHAVE-2)

Thierry Leblanc¹, I. S. McDermid¹, H. Vömel², and T. G. McGee³

¹Jet Propulsion Laboratory, California Institute of Technology, Wrightwood, CA. USA

² University of Colorado, CIRES, Boulder, CO. USA

³ NASA Goddard Space Flight Center, Greenbelt, MD. USA

MOTIVATION

- 1. Water Vapor (WV) in UT/LS plays major radiative role
- 2. WV in UT/LS variability and trends not yet well understood
- 3. Accurate WV measurements in the UT/LS remains very difficult
 - 4. Stable and reliable groundbased measurements needed to validate space-borne instruments (e.g., onboard Aura)
- → The Network for the Detection of Atmospheric Composition Change (NDACC) now includes WV Raman lidar among its suite of long-term monitoring instruments

The MOHAVE campaign (October 2006) was designed to assess the current (and future) measuring capabilities of the WV Raman lidars

MOHAVE involved 5 lidars, 50+ PTU sondes, 10 CFH sondes, 2 GPS, 1 microwave, and more...

CAMPAIGN OPERATION

Site: Table Mountain, CA Alt. 2285 m Lat./Long. 34.4°N, 117°W

10 + 4 consecutive clear nights (14 total, October 14-28, 2006)

TMF WV lidar (Leblanc/McDermid, JPL) 96 hours

AT mobile lidar (McGee, NASA-GSFC) 113 hours

SRL mobile lidar (Whiteman, NASA-GSFC) 44 hours

CFH + ozonesonde (Vömel, CIRES/Univ. Col.) 10 launches

RS92 PTU radiosoundings (Vaisala) 37 launches (49 sondes)

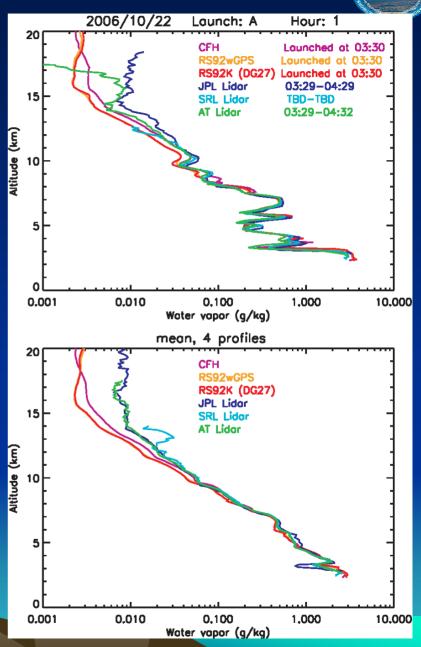
Also on-site during the campaign:

WV Microwave (NRL)

Two GPS receivers (JPL, GSFC)

Tropospheric ozone lidar (JPL)

Stratospheric ozone/temp lidar (JPL)

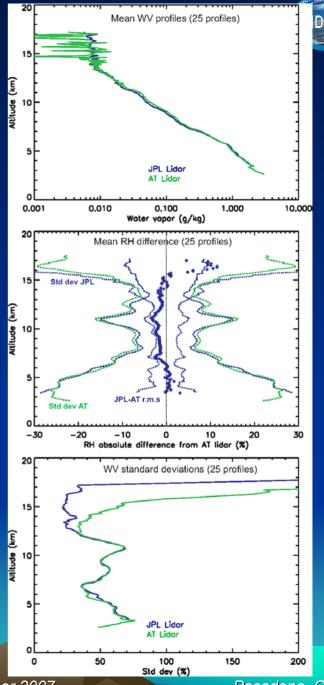


Example of simultaneous measurements

Top:
October 22, 1-hour profiles
all instruments

Bottom:
Mean of the four 1-h profiles
obtained simultaneously
by all the instruments

→ Wet bias of the lidars w.r.t. CFH above 12 km


JPL Lidar – AT Lidar comparison

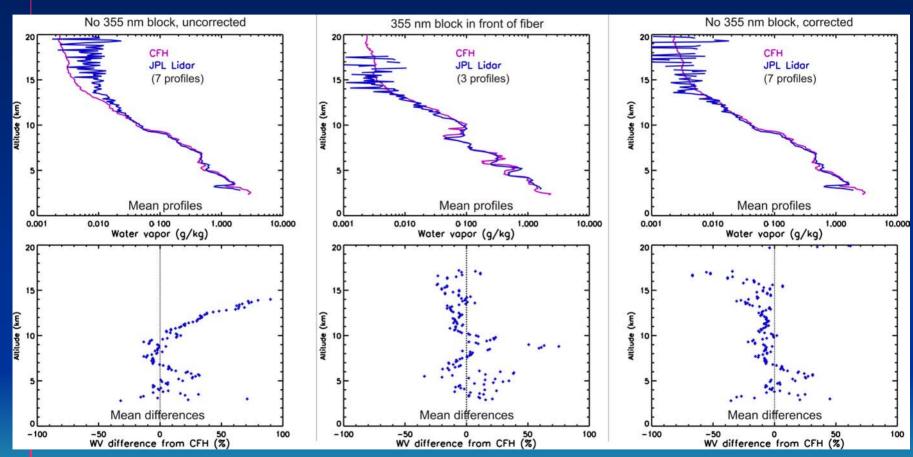
Top:
Mean of the 25 1-hour profiles
Simultaneously measured

Middle: Mean difference, r.m.s. and standard dev.

Bottom: Standard deviations

→ Both lidars agree very well; Noise slightly higher for AT lidar

Comparison JPL Lidar - CFH



Left:
Mean 7 profiles with no 355 nm block

→ Lidar wet bias

Middle:
Mean 3 profiles with a 355 nm block

→ No more bias!

→ Fluorescence in lidar receiver optic fiber removed = Major finding

Comparisons Vaisala RS92 - CFH

Left: Profiles

Purple = CFH (ref)

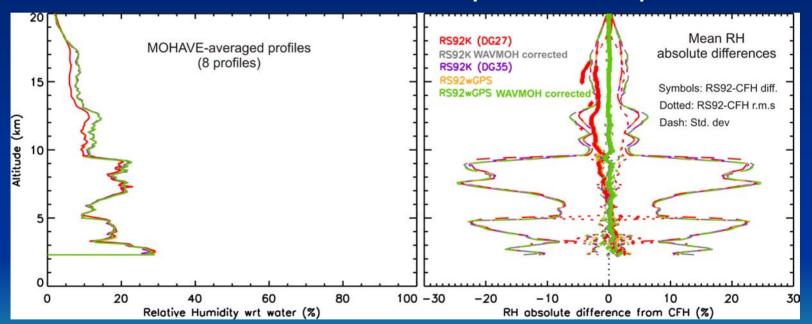
Red = RS92K by JPL

Orange = RS92 w/ GPS by GSFC

Grey = As red, but with Milo* correc.

Green = As orange but with Milo correc.

Right: Differences


Red = RS92K by JPL

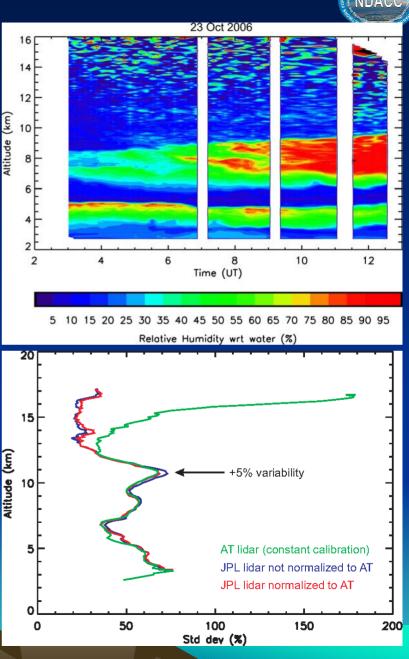
Orange = RS92 w/ GPS by GSFC

Grey = As red, but with Milo correc.

Green = As orange but with Milo correc.

Purple = As red but processed w/ DG35

→ *Miloshevic's empirical correction (NCAR) seems to work well

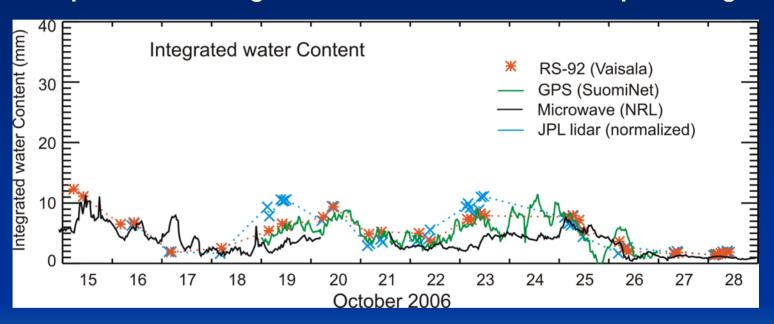

Lidar calibration and water vapor variability

Top: Shows high WV short-term variability

Bottom:
Shows WV variability
for different calibration configurations

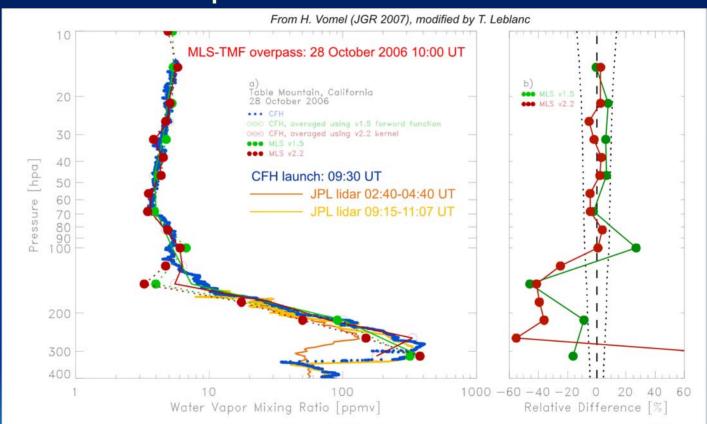
Green = AT lidar calibrated w/ constant Red = JPL lidar calibrated to AT lidar Blue = JPL lidar calibrated to RS92K

→ To be considered carefully for long-term applicability



WV lidar calibration: Search for alternate methods

Below:
Comparisons of integrated WV measurements looks promising


→ This alternate (cross-) calibration method will be considered in the future

What about Aura? → MOH-AVE

Below: October 28 comparison CFH and JPL lidar with Aura-MLS

Good agreement despite large variability at 250-300 hPa

Demonstrates the critical impact of high variability and the resulting difficulty to validate WV measurements

CONCLUSIONS

- 1. MOHAVE was a successful campaign
- 2. Fluorescence was found to be inherent to all three participating lidars
- 3. Once fluorescence was removed, agreement with CFH was extremely good up to 18 km altitude
- → Water vapor Raman lidar found to be a promising instrument for the long-term monitoring of water vapor in the UT/LS, BUT...

Additional laser power and improved efficiency of the lidar receiver are required to achieve trend detection capability

→ MOHAVE-2 starting October 4, 2007 (this Thursday)
Lidars reconfigured to remove 2006 fluorescence